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This paper studies the dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing
oscillator. Analytic solutions are obtained in both the resonant and nonresonant cases. Chaotic behavior is
observed using the Shilnikov theorem and from a direct numerical simulation of the coupled equations of
motion. @S1063-651X~96!13610-2#

PACS number~s!: 05.45.1b

I. INTRODUCTION

In recent years, particular interest has been devoted to the
dynamics of coupled oscillators@1–20#. This is due to the
fact that coupled oscillators provide fundamental models for
the dynamics of various physical, electromechanical, chemi-
cal, and biological systems. Among these coupled oscilla-
tors, the most intensively studied are the coupled van der Pol
or self-sustained oscillators@1–8# and the coupled Duffing
oscillators @1,6,11,17–20#. To the best of our knowledge,
less has been done in a system consisting of a self-excited
oscillator coupled to an anharmonic oscillator of the Duffing
type. Our aim in this paper is to consider the dynamics of
such a system described by the following set of equations:

ẍ2«1F~x!ẋ1G~x!5c1y1c2ẏ, ~1a!

ÿ1«2ẏ1H~y!5c1x1c2ẋ, ~1b!

whereF, G, andH are polynomial functions of the form

F~x!512x2, ~2a!

G~x!5W1
2x1cx3, ~2b!

H~x!5W2
2x1c0x

3. ~2c!

«1 and«2 are positive parameters.c andc0 are some non-
linearity coefficients. c1 andc2 are, respectively, the elastic
and the dissipative coupling parameters.W1 andW2 are the
natural frequencies of the oscillators.

The set of Eqs.~1! is a mathematical description of the
time evolution of various coupled autonomous systems. In-
deed when the coupling parameters are set equal to zero, the
system~1! turns into two classical, rich, and well-studied
oscillators. Namely, the first equation~1a! reduces to the van
der Pol oscillator, which serves as a basic model for self-
excited oscillators in physics, mechanics, and electronics
@1,21–24#. The final state of this oscillator is a sinusoidal
limit cycle when«1 is small, but leads to relaxation oscilla-
tions when«1 becomes large~see the above references!. The
second equation~1b! in its part reduces to the autonomous
Duffing oscillator@25#, which describes the motion of vari-
ous physical systems such as the pendulum, electrical cir-

cuits, Josephson junctions, optical bistability, plasma oscilla-
tions, buckled beam, ship dynamics, vibration isolators, to
name a few~see Refs.@1,21,25#!. In this autonomous state,
Eq. ~1b! shows damped vibrations~«2 being the damping
coefficient! ~see Refs.@1,22#!. An example of a physical sys-
tem with practical interest that Eq.~1! can describe is a non-
linear oscillator functioning under the action of a self-
sustained electrical oscillator.

Among problems related to the dynamics of systems de-
scribed by Eq.~1!, globally autonomous, we concentrate in
this paper on the analysis of the oscillatory states in the reso-
nant and nonresonant cases and on the question of a possible
appearance of chaotic behavior.

The structure of the paper is as follows. In Sec. II, we
give an analytic treatment of Eqs.~1!. The method of mul-
tiple scales@1# is used to find approximate solutions of the
oscillatory states. We end the section by giving the criterion
of chaotic motion following Shilnikov’s theorem@4,26#. Sec-
tion III is concerned with a direct numerical integration of
the coupled systems. We conclude in Sec. IV.

II. ANALYTIC TREATMENT

We seek approximate solutions of Eq.~1! by using the
method of multiple scales described in Ref.@1#. In general,
we considerx(t) andy(t) in the form

x~ t,«!5x0~T0 ,T1!1«x1~T0 ,T1!, ~3a!

y~ t,«!5y0~T0 ,T1!1«y1~T0 ,T1!, ~3b!

whereT05t is a fast scale andT15«t is a slow scale char-
acterizing the modulation in the amplitudes and phases
caused by nonlinearity, coupling, and resonances. The time
derivatives ~single overdot isd/dt and double overdot is
d2/dt2! become

d

dt
5D01«D11••• , ~4a!

d2

dt2
5D0

21«~2D0D1!1••• , ~4b!

whereDn5]/]Tn .
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Substituting Eqs.~3! and ~4! into Eqs.~1! with Eqs. ~2!
and equating coefficients of like powers of«, and assuming
that the system parameters are in the same order of«, we
obtain

D0
2x01W1

2x050, ~5a!

D0
2y01W2

2y050, ~5b!

D0
2x11W1

2x15«1~12x0
2!D0x02cx0

322D0D1x01c1y0

1c2D0y0 , ~5c!

D0
2y11W2

2y152«2D0y02c0y0
322D0D1y01c1x0

1c2D0x0 . ~5d!

The general solutions of Eqs.~5a! and~5b! can be written
in the form

x0~T0 ,«!5A1~T1!e
iW1T01c.c., ~6a!

y0~T0 ,«!5A2~T1!e
iW2T01c.c., ~6b!

where c.c. stands for the complex conjugate of each preced-
ing term. The quantitiesA1(T1) and A2(T1) are arbitrary,
complex functions which are determined from Eqs.~5c! and
~5d! by imposing solvability or secular conditions. Substitut-
ing Eqs.~6a! and ~6b! into ~5c! and ~5d!, we obtain

D0
2x11W1

2x15$22iW1D1A11 i«1W1A1~12A1Ā1!

23cĀ1A1
2%eiW1T02A1

3$c1 i«1W1%e
i3W1T0

1$c11 ic2W2%A2e
iW2T01c.c., ~7a!

D0
2y11W2

2y15$22iW2D1A22 i«2W2A223c0Ā2A2
2%eiW2T0

2c0A2
3ei3W2T01$c11 ic2W1%A1e

iW1T0

1c.c., ~7b!

whereĀ1 andĀ2 are, respectively, the complex conjugates of
A1 andA2.

A. The nonresonant case

Here we analyze the caseW1ÞW2 . The conditions for
elimination of the secular terms~solvability conditions! in
Eqs.~7! are

2iW1D1A12 i«1W1A1~12A1Ā1!13cĀ1A1
250, ~8a!

2iW2D1A21 i«2W2A213c0Ā2A2
250. ~8b!

ExpressingA1(T0 ,«) andA2(T0 ,«) in the polar form

A1~T0 ,«!5 1
2a1~T0 ,«!exp@ iu1~T0 ,«!#, ~9a!

A2~T0 ,«!5 1
2a2~T0 ,«!exp@ iu2~T0 ,«!#, ~9b!

where a1(T0 ,«) and u1~T0,«!, respectively,a2(T0 ,«) and
u2~T0,«! are the amplitudes and the phases of the fundamen-
tal solutions. We thus obtain the following set of first-order
differential equations for the amplitudes and phases:

da1
dT1

5
«1a1
2

~12 1
4a1

2!, ~10a!

da2
dT1

52
«2a2
2

, ~10b!

df

dT1
5
3

8 S c

W1
a1
22

c0
W2

a2
2D , ~10c!

wheref5u12u2.
In its general form, Eqs.~10! show that in the nonresonant

case, both oscillators are uncoupled and the time evolution of
the amplitudes is given by

a1~T0 ,«!5
2

A12S 12
4

a01
2 D exp~2«1T1!

, ~11a!

a2~T0 ,«!5a02expS 2
«2
2
T1D , ~11b!

corresponding to the amplitudes of the classical van der Pol
oscillator and the autonomous Duffing oscillator~as t in-
creases,a1→2 anda2→0!.

B. The resonant case and the Shilnikov criterion for chaos

It follows from Eqs.~7! that only the primary resonance
can be observed in our system. To express quantitatively the
nearness ofW2 toW1, we introduce a detuning parameters
according to

W25W11«s. ~12!

The new solvability conditions in Eqs.~7! become

22iW1D1A11 i«1W1A1~12A1Ā1!

23cĀ1A1
21~c11 ic2W2!A2e

isT1, ~13a!

22iW2D1A22 i«2W2A223c0Ā2A2
2

1~c11 ic2W1!A1e
2 isT1. ~13b!

ExpressingA1(T0 ,«) and A2(T0 ,«) in the polar form as
above defined and substituting into Eqs.~13!, we obtain the
following set of first-order differential equations for the am-
plitudes and phases:

da1
dT1

5
«1a1
2 S 12

1

4
a1
2D1

c1
2W1

a2sinn1
c2W2

2W1
a2cosn,

~14a!

da2
dT1

52
«2
2
a22

c1
2W2

a1sinn1
c2W1

2W2
a1cosn, ~14b!

dn

dT1
5
3

8 S c0W2
a2
22

c

W1
a1
2D1

c1
2 S 1

W1

a2
a1

2
1

W2

a1
a2

D cosn
2
c2
2 SW1

W2

a1
a2

1
W2

W1

a2
a1

D sinn1s, ~14c!
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wheren5u22u11sT1.
The equilibrium statesa15A01, a25A02, and n5n0 of

Eqs.~14! are defined by the following set of nonlinear alge-
braic equations forA01 and A02 @n0 can be obtained after
substitution ofA01 andA02 into Eq. ~14c!#:

16«2
2W2

2A02
2 ~W1

2A01
2 1W2

2A02
2 !219W1

2A01
4 A02

2 ~W2cA01
2

2W1c0A02
2 !2216c2

2W1
2A01

2 ~W1
2A01

2 1W2
2A02

2 !250,

~15a!

where

A02
2 5

«1W1
2

4«2W2
2 A01

2 ~A01
2 24!, ~15b!

where we have considered only the dissipative coupling.
Equations ~14! also have a trivial equilibrium point
A015A0250 andn0 undefined.

The stability of each fixed point can be determined by
calculating the eigenvalues of system~14!, linearized about
the steady valuesA01, A02, and n0. Substituting Eq.~15b!
into Eq.~15a!, we obtain the following tenth-order nonlinear
algebraic equation:

b10A01
101b9A01

9 1b6A01
6 1b4A01

4 1b2A02
2 1b050, ~15c!

with the coefficientsbi defined in the Appendix.
Equation~15c! is solved using the Newton-Raphson algo-

rithm. Figures 1 and 2 show the response curves, respec-
tively, in terms of the detuning parameters and the dissipa-
tive coupling constantc2~s50! for some selected values of
the system parameters~W251; «15«250.01; c050.0125;
c50.0250; andc150!. Figures 1 and 2 show hysteresis do-
mains and we have found that only the lower branches cor-
respond to stable solutions. It can also be found that when
the detuning increases,a1→2 anda2→0, leading to the non-
resonant~or uncoupled! motion as analyzed above. To find
the criterion for chaotic behavior in our model, we have used
Shilnikov’s theorem@4,26#. The theorem states that for chaos
to occur within a third-order autonomous system such as that
described by Eqs.~14!, the eigenvalues of the 333 matrix,
formed from the Jacobian derivative of the system at an
equilibrium state (A01,A02,n0), must be2d, andg6iv with
d.g.0. By varying the coupling coefficientc2, we have
found after solving numerically the eigenvalue equation that
Shilnikov’s criterion is satisfied for 0.0417<c2<0.5100. We
have also analyzed the system by considering the elastic cou-
pling c1 and no range of chaos has appeared. In the next

FIG. 1. ~a! The stationary solutionsA01 vs the detunings
~dashed lines forc250.05; full lines for c250.07! with W251,
«15«250.01,c050.0125,c50.0250, andc150. ~b! The stationary
solutionsA02 vs the detunings ~dashed lines forc250.05; full lines
for c250.07! withW251, «15«250.01,c050.0125,c50.0250, and
c150.

FIG. 2. The stationary solutionsA01 andA02 vs c2 ~same value
for the system parameters as in Fig. 1 but withs50!.
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section, we verify Shilnikov’s criterion by solving numeri-
cally the set of differential Eqs.~14! and the original Eqs.
~1!.

III. NUMERICAL COMPUTATION

We solve numerically Eqs.~1! and ~14! to find the range
of chaos. We use the fourth-order Runge-Kutta algorithm
@27#. The time step is alwaysDt50.04 and the calculations
are performed using reals in extended mode. The integration
time is always greater thanT5104. To characterize the de-
gree of chaos, we calculate the largest Lyapunov exponent
and draw phase portraits. The Lyapunov exponent is defined
asl5~1/t!ln(ux1u1uẋ1u1uy1u1u ẏ1u), wherexi andyi are so-
lutions of the variational equations@obtained from Eq.~1! by
settingx→x1x1 and y→y1y1 and linearizing around the
solutionsx andy#. The same can be done for Eqs.~14!.

Considering first the amplitude equation@see Eqs.~14!#, it
is seen thatai(t) always depend on time: a sort of beating
oscillation is generated because of the coupling. The phase
spaces (ai ,ȧi) shows the existence of limit cycles with pe-
riodic variations of the amplitudesai and the phasesfi @see
Fig. 3~a!#. Whenc2P@0.0399,0.2985#, the amplitudesai vary
chaotically as it appears in Figs. 3~b! and 3~c!. For Figs. 3~b!
and 3~c!, the largest Lyapunov exponent computed from Eq.
~14! is lmax50.0014.

In view of verifying the results from the analysis of Eqs.
~14! obtained by the method of multiple scales, we have also
computed numerically the original Eqs.~1!. We first note
that in general, the coupling generates, as mentioned here
before, a modulation of the amplitudesai . For the param-
eters of Figs. 3~b! and 3~c!, the phase portrait for the first
oscillator is shown in Fig. 4. Here the largest Lyapunov ex-
ponent@computed from Eqs.~1!# is lmax50.0012. It follows
from the numerical integration of Eqs.~1! that~for the values
of the system parameters used for Figs. 3 and 4! the chaotic
behavior occurs whenc2P@0.0400,0.2460#.

The difference between the range ofc2 for the occurrence
of chaos obtained from Shilnikov’s theorem and those of the
direct numerical simulations of Eqs.~1! and~14! can be ex-
plained by the fact that the application of Shilnikov’s theo-
rem required small values of the system parameters~the as-

FIG. 3. ~a! The phase space (a1 ,ȧ1) for c250.4. This corre-
sponds to a limit cycle with a modulation of the
amplitudes. ~W15W251, «15«250.01, c050.0125, c50.0250,
andc150.! ~b! The phase space (a1 ,ȧ1) for c250.04. This corre-
sponds to a chaotic state.~W15W251, «15«250.01,c050.0125,
c50.0250, andc150.! ~c! The phase space (a2 ,ȧ2) for c250.04.
This corresponds to a chaotic state@same value for the system pa-
rameters as in~b!#.

FIG. 4. Phase portrait of the first oscillator with the parameters
of Fig. 3~b!.
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sumption used to establish Eqs.~14! from the approximate
method!.

An interesting question related to the problem of chaos is
the way the chaos appears in the system. It follows from our
numerical simulation that the transition to chaos is abrupt.
We have drawn in Fig. 5 the bifurcation diagram showing
transition to chaos as the coupling coefficient increases. The
bifurcation diagram shows the first coordinatex of the attrac-
tor in the Poincare´ cross section versus the coupling coeffi-
cient c2 that has been increased in small steps. After each
step the last solution has been used as new initial conditions.

IV. CONCLUSION

This paper has dealt with the study of a self-sustained
oscillator ~van der Pol! coupled to a nonlinear oscillator of
the Duffing type. The coupling is elastic and dissipative. The
multiple scale technique has been used to derive analytic
solutions both in the resonant and nonresonant cases. It is
seen that the coupling generates the modulation of the am-
plitudes and a sort of beating oscillation is obtained. Shilni-

kov’s theorem is used to define the range of the coupling
coefficient leading to chaotic behavior. In view of verifying
the results obtained from Shilnikov’s theorem, we have car-
ried out a direct numerical simulation of the coupled equa-
tions of motion. A difference between the range of chaos
following Shilnikov’s theorem and that obtained from the
numerical simulation is found. This can be explained by the
fact that the analytic prediction required small values of the
system parameters and is obtained from the approximate
method. Our numerical computation has also shown that in
our model, chaos arises suddenly.

An interesting question under investigation is that of find-
ing the analytic solution of the system described by Eqs.~1!
in the case where the coupling coefficients are not small.
Another problem under consideration is that of analyzing the
oscillatory states and chaotic behavior of our system when an
external sinusoidal force is added to Eqs.~1!.

APPENDIX

b1059c0
2«1

3W1
10,

b952108c0
2«1

3W1
10272c0c«1

2«2W1
7W2

3,

b6516«1
3«2

2W1
6W2

61432«1
3c0

2W1
101576«1

2«2c0cW1
7W2

3

1144«1«2
2c2W1

4W2
6,

b45128«1
2«2

3W1
6W2

6264c2
2«1

2«2W1
6W2

621152c0c«1
2«2W1

7W2
3

2192«1
3«2

2W1
6W2

62576c0
2«1

3W1
102576c2«1«2

2W1
4W2

6,

b25512«1
2«2c2

2W1
6W2

621024«1
2«2

3W1
6W2

61768«1
3«2

2W1
6W2

6

1256«1«2
4W1

6W2
62512«1«2

2c2
2W1

6W2
6,

b0521024«2
3c2

2W1
6W2

621024«2
2«1

3W1
6W2

612048«1
2«2

3W1
6W2

6

21024«1
2«2c2

2W1
6W2

612048«1«2
2c2

2W1
6W2

6

21024«1«2
4W1

6W2
6.
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